

MORPC TAC

What is the Multimodal Design Guide?

1.1 Purpose

The Multimodal Design Guide (MDG) serves as the primary source for planners and designers implementing pedestrian and bicycle facilities in ODOT right-of-way and as part of the Local Let Process

By providing comprehensive state-of-thepractice design guidance, the MDG aligns with ODOT's current vision, mission, and goals related to walking and bicycling.

What is the MDG?

ODOT's **premier** bike & ped design resource

Built on <u>national</u> best practices

Proven design solutions

ODOT MULTIMODAI DESIGN GUIDE

How does the MDG help Ohio?

Helping Ohio

- Safer roads for everyone
- Context Sensitive
- Consistent designs

Helping Ohio

Consolidated resource

How will the MDG be used?

How to use this guide:

Relationship to other Standards & Guides

L&D Vol. I

- 306 Pedestrian Facilities
- 702 Shared Use Paths
- 308 On Road Bicycle Facilities

Multimodal Design Guide Outline:

1. Introduction

3.

6.

- 2. Multimodal Planning & Design Scoping Process
 - Elements of Design
 - Pedestrian Facilities
 - Shared Use Paths
 - **On-Road Bicycle Facilities**
- 7. Motor Vehicle Facilities Supporting Multimodal Accommodation
- 8. Signals, Beacons, and Signs
- 9. Multimodal Accommodations at Interchanges & Intersections
- 10. Transit Facilities
- 11. Rail Crossings
- 12. Maintaining Pedestrian and Bicycle Facilities

Relationship to other Standards & Guides

Notable Topics included in the MDG

Table Of Contents

Multimodal Design Guide Outline:

- 1. Introduction
- 2. Multimodal Planning & Design Scoping Process
- 3. Elements of Design
- 4. Pedestrian Facilities
- 5. Shared Use Paths
- 6. On-Road Bicycle Facilities
- 7. Motor Vehicle Facilities Supporting Multimodal Accommodation
- 8. Signals, Beacons, and Signs
- 9. Multimodal Accommodations at Interchanges & Intersections
- 10. Transit Facilities
- 11. Rail Crossings
- 12. Maintaining Pedestrian and Bicycle Facilities

Section 1.4: Definitions

Chapter 1: Introduction

Examples:

Bikeway – Any road, path, or facility intended for bicycle travel which designates space for bicyclists distinct from motor vehicle traffic. A bikeway does not include shared lanes, sidewalks, signed bicycle routes, or shared lanes with shared lane markings, but does include bicycle boulevards.

Crosswalk – The pedestrian accessible route within a street used to cross a street or portion of a street. Further defined in the *Ohio Revised Code*, Section 4511.01(LL), as (1) that part of a roadway at intersections ordinarily included within the real or projected prolongation of property lines and curb lines or, in the absence of curbs, the edges of the traversable roadway; (2) any portion of a roadway at an intersection or elsewhere, distinctly indicated for pedestrian crossing by lines or other markings on the surface; (3) Notwithstanding definitions (1) and (2), there shall not be a crosswalk where local authorities have placed signs indicating no crossing.

2.4 Context Sensitive Design

Chapter 2: Multimodal Planning & Design Scoping Process

LAND USE CONTEXT CLASSIFCATION	R	URAL	RURAL TOWN	SUBU	RBAN	URBA	N	URBAN CORE
LAND USE TYPE	NATURAL	AGRICULTURAL	RESIDENTIAL OR COMMERCIAL	RESIDENTIAL	COMMERCIAL	RESIDENTIAL	COMMERCIAL	DOWNTOWN CENTER

Source: Florida DOT Context Classifications Modified by Toole Design

2.5.1 Pedestrian Facilities

Chapter 2: Multimodal Planning & Design Scoping Process

Land Use Context Classifications	Sidewalk/Walkway		
	Paved shoulders		
Rural	Shared Streets		
	Shared use paths		
Suburban	Sidewalks on both sides of the roadway		
Suburban	Shared use paths		
	Sidewalks on both sides of the roadway		
Urban Core, Urban, and Rural Town	Shared Streets		
	Shared Use Path		

2.5.2.1 Preferred Bikeway Type Urban, Urban Core, Suburban, and Rural Town Contexts

Design User Assumption: Interested But Concerned Bicyclist

Analysis: Bicycle Level of Traffic Stress (LTS)

Notes

- 1. Chart assumes operating speeds are similar to posted speeds. If they differ, use operating speed rather than posted speed.
- 2. See Section 2.8.1 for a discussion of alternatives if the preferred bikeway type is not feasible.

3.6.1 User Operating Space & Facility Widths Chapter 3 Elements of Design

Pedestrian Design User is a typical adult in a wheelchair

3.2.1 User Profiles: Bicyclists

Chapter 3 Elements of Design

BICYCLIST DESIGN USER PROFILES

Interested but Concerned

51-56% of the total population

Often not comfortable with bike lanes, may bike on sidewalks even if bike lanes are provided; prefer off-street or separated bicycle facilities or quiet or traffic-calmed residential roads. May not bike at all if bicycle facilities do not meet needs for perceived comfort.

Somewhat Confident

5-9% of the total population

Generally prefer more separated facilities, but are comfortable riding in bicycle lanes or on paved shoulders if need be.

Highly Confident

4-7% of the total population

Comfortable riding with traffic; will use roads without bike lanes.

Urban, Suburban, Rural Town Contexts

 Design User Assumption: Interested but Concerned

Rural Context

 Design User Assumption: Highly Confident

When we design for the Interested but Concerned User, we accommodate the Somewhat Confident and Highly Confident Riders... in other words we're designing for everyone!

LOW STRESS TOLERANCE HIGH STRESS TOLERANCE

6.3 On Road Bicycle Facilities

Chapter 6: On-Road Bicycle Facilities

- Bicycle Routes
- Shared Lanes
- Bicycle Boulevards
- Paved Shoulders
- Conventional Bike Lanes
- Buffered Bicycle Lanes
- Raised Bicycle Lanes
- Separated Bicycle Lanes

6.3.7. Separated Bicycle Lanes

Chapter 6: On-Road Bicycle Facilities

Configuration on a One-Way Street

Corridor-level Planning Considerations	One-way SBL	Counterflow SBL	One-way SBL Plus Counterflow SBL	Two-way SBL	
Access to Destinations	Limited access to other side of street		Full access to both sides of street	Limited access to other side of street	
Network Connectivity	Does not address demand for counterflow bicycling, may result in wrong way riding	Requires bicyclists traveling in the direction of traffic to share the lane (may result in wrong way riding in the SBL); counterflow progression through signals may be less efficient	Accommodates two-way bicycle travel, but counterflow progression through signals may be less efficient		
Crash Risk	Lower because pedestrians and turning drivers expect concurrent bicycle traffic	Higher because pedestrians and turning drivers may not expect counterflow bicycle traffic			
Intersection Operations	May use existing signal phases; separate bicycle phase may be required depending on vehicle volumes	Typically requires additional signal equipment; separate bicycle phase may be required depending on vehicle volumes			

Configuration on a Two-Way Street

	One-way SBL Pair	Two-way SBL	Median Two-way SBL		
Corridor-level Planning Considerations					
Access to Destinations	Full access to both sides of street	Limited access to other side of street	Limited access to both sides of street		
Network Connectivity	Accommodates two-way bicycle travel				
Crash Risk	Lower because pedestrians and turning drivers expect concurrent bicycle traffic	Higher because pedestrians and turning drivers may not expect counterflow bicycle traffic	Higher because pedestrians and turning drivers may not expect counterflow bicycle traffic, but median location may improve visibility and create opportunities to separate conflicts		
Intersection Operations	May use existing signal phases; separate bicycle phase may be required depending on vehicle volumes	Typically requires additional signal equipment; separate bicycle phase may be required depending on vehicle volumes			

6.5.2 SBL (& Sidepath) Intersection Design Chapter 6: On-Road Bicycle Facilities

Protected Intersections Preferred

Mixing Zone Options for Constrained Conditions

7.8.2 Horizontal Deflection

Chapter 7: Motor Vehicle Facilities Supporting Multimodal Accommodation

Traffic Circles

Lateral Shifts & Chicanes

Mini- and Modern Roundabouts

7.8.3 Vertical Deflection

Chapter 7: Motor Vehicle Facilities Supporting Multimodal Accommodation

Vertical deflection as a traffic calming measure is only permitted across local and collector streets where posted speeds are less than 35 mph and where roadway grades do not exceed 8%.

Options include:

- Speed Humps
- Raised Crossings
- Speed Tables

7.8.4 Street Width Reduction

Chapter 7: Motor Vehicle Facilities Supporting Multimodal Accommodation

Road Diet

Yield Streets

One-Lane Pinch Points

9.3 Interchanges

Chapter 9: Multimodal Accommodations at Interchanges & Intersections

- Diamond Interchanges
- Cloverleaf Interchanges
- Single Point Urban Interchanges (SPUI)
- Diverging Diamond Interchanges (DDI)

Figure 9-5: Various Bicycle and Pedestrian Treatments at a SPUI

9.4 Alternative Intersections

Chapter 9: Multimodal Accommodations at Interchanges & Intersections

- Median U-Turn (MUT)
 Intersections
- Restricted Crossing U-Turn (RCUT) Intersections
- Displaced Left Turn (DLT) Intersections
- Roundabout Intersections

10.4 Locating Bus Stops

Chapter 9: Transit Facilities

- Stop Placement
 - Far-Side
 - Near-Side
 - Mid-Block
- Stop Configuration
 - In-Lane Bus Stops
 - Pull-Out Bus Stops

10.5 Integrating Bicycle Facilities with Transit

FLOATING BUS STOP DETAILS

REFERENCE SECTIONS 4.5.3, 6.3.7, 6.3.8, 6.5.2, 7.2, 10.5

DWG 10-1.1

Chapter 12: Maintenance

12.2 Management Approaches12.3 Types of Maintenance12.4 Winter Maintenance12.5 Additional Resources

Pickup truck with plow Approximate Width: 8.5 ft./2.6 meters Walkway/Bikeway Facility Types: Trails, side paths, 2-way separated bike lanes

Skid loader with snow blower Approximate Width: 4 ft./1.2 meters Walkway/Bikeway Facility Types: Walkways, trails, side paths, 2-way separated bike lanes, 1-way separated bike lanes

Miniature tractor with snow blower Approximate Width: 4 ft./1.2 meters

Lawn mower tractor (converted to winter maintenance vehicle) with broom

Multimodal Design Guide

Training

MDG 101 Training Videos:

Serve as a series of recorded videos providing an overview of <u>what is in the guide and where to</u> <u>find content.</u>

Multimodal Design Guide

Training

MDG 201 Live Trainings:

Serve as a live (but virtual) opportunity for a deeper dive on the MDG and training on <u>applying the design</u> <u>guidance in practice.</u>

- Consists of two, 3-hour training sessions offered over two days
- 201 training sessions on December 6 & 7 and January 25 & 26 will be open to local practitioners, consultants, and partners

Cait Harley

SRTS & Active Transportation Manager ODOT Office of Transportation & Economic Development 614.466.3049 <u>Caitlin.Harley@dot.ohio.gov</u>

Mike Cronebach

ODOT Office of Roadway Engineering Mike.Cronebach@dot.ohio.gov

Kevin Fiant

ODOT Office of Roadway Engineering kevin.fiant@dot.ohio.gov